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We describe a series of laboratory experiments to study convective structures in 
rotating fluids (distilled water) in ranges of Rayleigh flux number Ra, from lo6 to 
2 x lo1' and of Taylor number Ta from lo6 to 10l2. An intermediate quasi-stationary 
ring pattern of convection was found to arise from the interaction of the onset of 
convection with the fluid spin-up, for which we determined the times of origin and 
destruction, the distances between the rings, and the diameter of the central ring in 
terms of Ra, and Ta. The ring structure evolves into a vortex grid which can be regular 
or irregular. In terms of Ra, and Ta the regular grid exists in the linear regime, when 
the number of vortices N is in accord with the linear theory, when N a h-Vak a a, 
or in the nonlinear regime when N a h-2Ta&a;! a Q, where D is the angular velocity 
and h is the fluid depth. In  the irregular regime we always have N cc Q. The transition 
from the regular regime to the irregular one is rather gradual and is determined by 
the value of the ordinary Rayleigh number, which we found to be greater than the 
first critical number Ra a Td by a factor about 25-40. In the transition region vortex 
interactions are observed, which start with rotation of two adjacent vortices around 
a common axis, then the vortices come closer and rotation accelerates, following 
which the vortices form a double helix and then coalesce into one stronger vortex. 

Some other qualitative experiments show that if the rotating vessel with the 
convective fluid is inclined to the horizontal, the vortex grid is formed along the 
rotation axis in accordance with the Proudman-Taylor theorem. 

1. Introduction 
Convection in rotating fluids is of interest for various applications, but it has 

not been studied experimentally for a sufficiently wide range of the determining 
parameters. Jeffreys (1928) was probably the first to note that rotation must increase 
the flow stability and delay the onset of convection. However, a quarter of a century 
had passed before the first rigorous results by Chandrasekhar (1953, 1961) and 
Nakagawa & Frenzen (1955) appeared. These authors found analytically the neutral 
stability curve for a plane infinite horizontal layer with the free-stress upper and lower 
boundaries rotating around the vertical axis. 

It is known that sufficiently fast rotation of an inviscid fluid forbids motions along 
the rotation axis (see, e.g. Chandrasekhar 1961) owing to the Proudman-Taylor 
theorem. However, if the fluid layer is convectively unstable, it needs vertical motions 
to transfer heat across the layer. There is only one way out of this contradiction: 
motions are possible in narrow or small regions where the viscosity lifts away the 
Proudman-Taylor constraint, i.e. in sheets or vortices. 
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The linear theory of convection in rotating fluids is technically complicated. 
Analytical results are found only for the free-stress boundaries. Chandrasekhar (1953, 
1961) had to use a variational method to find the stability curve and the size of cells 
numerically. The weakly nonlinear approximation is at present almost intractable 
(see e.g. Veronis 1968). Therefore, it is difficult to foresee any rapid progress from 
an analytical approach. The same can be said about direct numerical methods, in view 
of the rich variety of convective patterns that we have observed and described below. 

Therefore, to study this kind of convection, we have performed laboratory 
experiments. Making full use of our limited facilities and previous experience we have 
revealed some quantitative characteristics of the processes under study. Qualitative 
results are presented only to support quantitative ones or where these are unusual. 
Convection is a simple means of exciting motions in a fluid which reveals some general 
features of forced motion in rotating fluids and also of vortical motions. 

All the experiments were conducted with distilled water, because its parameters 
and the water itself are readily available over a wide range of temperatures. We have 
taken the main thermal characteristic of the process to be the total heat flux coming 
through the fluid layer, f. A method of determining f in the case of the fluid free surface 
was proposed by Golitsyn (1979) and Golitsyn & Grachev (1980), and it has been 
tested in a variety of laboratory and field experiments (see Golitsyn & Grachev 1986). 
Therefore, all our photographic or visual measurements of the flow structure could 
be classified using the similarity criteria, which are the Rayleigh flux number 

and the Taylor number 

4Wh4 
Ta = - 

v2 ’ 

where a is the thermal expansion coefficient of the fluid used, g the gravitational 
acceleration, p,  cp ,  k, v are respectively the density, specific heat capacity at  constant 
pressure, thermodiffusivity and kinematic viscosity, SZ the angular velocity of 
rotating layer and h its depth. If we know the heat flux f and the temperature of 
the water T, we can determine Raf with an error of order 5 % or less, the main errors 
arising in calculating f (Grachev 1983; Golitsyn & Grachev 1985). The dependence 
of all of the parameters on temperature must be taken into account (Vargaftik 1972). 

Our work differs from many others when SZ = 0 in that we can determine the 
Rayleigh flux number, Raf,  but not the ordinary Rayleigh number, Ra, which is 
appropriate when the temperature difference between the boundaries A T  is prescribed. 
The two numbers are related as 

(1 -3) Raf = Ra N u ,  

f h  
where the Nusselt number 

N u  = 
p c p  kAT 

is the ratio of the heat fluxf to that which would be in the layer in the absence of 
motions due to pure molecular conduction. Note that at  the stability curve Nu = 1 
by definition, and therefore, Raft, = Ra,, a t  the curve. Of course, higher up the 
stability curve we have Raf > Ra, because there N u  > 1. 

We know of only three experimental works that contain studies of convection with 
rotation. Nakagawa & Frenzen (1955) presented some photographs of convective 
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motions which reveal their vortex structure. They checked the stability curve Racr 
as a function of Ta for water in the range lo5 < Ra < lo8 and los < Ta < 2 x lolo, 
and gave results of three determinations of the cell sizes at three pairs of values of 
Ra and Ta. Rossby (1969) concentrated on the influence of rotation on the heat 
transfer between two rigid plates. He described the spatial structure of convection 
only at relatively small Taylor numbers, up to lo4, when the role of rotation is not 
yet large and he observed rolls which were breaking up into vortices when he increased 
the rotation further. Dikarev (1983) observed the development of convection in 
rotating water cooled from above (from the free surface). In  his mostly qualitative 
work, he noted that the convective motions were first organized as concentric rolls 
which after a time became unstable, and cyclonic vortices were formed in a regular 
pattern in which the cooled fluid flowed downwards. He found that the time of vortex 
formation increased with 52 and the number of vortices was also proportional to 51 
in accord with the assumption that the distance between the vortices was proportional 
to the Ekrnan length 

1, = ( U / Q ) t ,  (1.5) 

as was proposed by Golitsyn (1981) for the distance between rolls, or sheets, and by 
Hopfinger, Browand & Gagne (1982) for vortices forming in a rotating fluid with 
mechanically produced turbulence. But he did not notice that these results contra- 
dicted the linear theory (see (1.10) and $5 below). 

An interesting work by Busse & Carrigan (1974), which should also be mentioned 
here, studied experimentally the convection in an annulus with inner and outer walls 
heated differentially and applying a very fast rotation so that the centrifugal force 
was much greater than the gravity force. In  the situation when the volume force was 
almost perpendicular to the direction of f.2 they observed convection organized in 
vertical rolls. This is a good illustration of the Proudman-Taylor theorem. 

Before coming to our experiments we present a summary of the main theoretical 
results (Chandrasekhar 1961 ; Nakagawa & Frenzen 1955) that we shall need. The 
critical Rayleigh number for a rotating layer (for Prandtl number Pr = v/k > 0.677 
when there is no oscillating overstability) is 

Racr = 3 ~ ~ ( ~ + c o s h @ + c o s h ~ @ ) ,  q5 = cosh-' ( 1 + 7  2Ta) . ( 1 . 6 ~ )  

From this at sufficiently large Taylor numbers (for Ta > lo6 with accuracy better 

Racr = 3(3n2)) i  Tag 8.7 Tag. (1.6b) 
than 1 %) we have 

The critical Rayleigh number is related to the critical spatial wave length a,, as 

Racr = 3 ( a E , + ~ ~ ) ~ ,  a& = n2cosh@-+n2. (1.7) 

At sufficiently large Ta 

acr = (in2 Ta)i x 1.3 Tai. (1.8) 

The convective cells have hexagon shapes and the distance between their centres 
d is related to acr and the layer depth h by 
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FIQURE 1. A schematic of the experimental installation (see the text for notation). 

One can also introduce the vortex density N, which for the hexagonal structure 
can be defined, using (1.8) and (1.9), as 

(1.10) 

The relationships (1.6)-( 1 .lo) were obtained for both free-stress boundaries of the 
fluid layer and the given temperature difference. But for the problem to be considered 
here we have the upper boundary free a t  which not the temperature but the heat 
flux, is prescribed, i.e. the vertical temperature derivative. To our knowledge no-one 
has yet considered such a problem. Chandrasekhar (1961) considered cases with two 
rigid boundaries and one rigid, one free boundary. Though there are no analytical 
results, inspection of his figures 21 and 22 and tables VII-IX shows that dependences 
(1.6 b) and (1.8) apply, with some slight modifications in numerical multiplyers of 
order a few percent, for a,,. In  the range 10" < Tu < 1O1O values of Ru,, for both 
boundaries rigid and both free differ by some 20-15 %, the former being lower than 
the latter with some decrease in the difference as Tu increases. The case of one rigid, 
one free boundary is intermediate between the two. 

The close agreement of results for Ru,, and a,, for all the three types of boundary 
conditions allows us to suppose that our particular case with one boundary free and 
the other rigid with a given heat flux would not differ much from these three cases, 
as confirmed by the results of $ 5  with respect to the spatial scale of convection. We 
did not attempt to determine Ra,, with any meaningful precision but we have 
assumed in $4  that it would not differ much from the known curves in its dependence 
on Tu. Thus we shall u~le the relationships (1.6b)-(1.10) as a reference case. 

2. Experimental installation and procedure 
Laboratory experiments were performed using the installation shown schematically 

in figure 1. The distilled water was poured into vessel 1, which had two forms. It was 
either a rectangular vessel of organic glass 1 cm thick with a square bottom 
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16.4 x 16.4 om2 and 25 cm high, or a cylindrical vessel with internal diameter 17 cm 
and 21 cm high. Their walls were thermo-insulated by a foamy plastic, 2, which could 
be removed to give a side view. The bottom, 3, was made of aluminium plate 2 cm 
thick, and water was circulated through basin 4, from the thermostat, 6.  All this 
apparatus is placed on a turntable, 5, the angular velocity of which could be varied 
from 0.5 to 5.2 s-l (4.8 to 50 revolutions per minute), though some experiments were 
carried out at about 1 and 60 rev/min. As a result the Ekman length (1.5) was of 
order 1 mm or less. At high rotation rates the free-surface slope was noticeable, but 
this did not introduce any noticeable perturbations in the observed patterns. The 
cylindrical vessel has a removable lid of double organic glass, through which water 
from another thermostat could circulate, which was used to perform some qualitative 
experiments with two rigid boundaries. The shape of the vessel did not in practice 
influence the convective patterns in the central parts of the vessel, outside the angular 
regions in the vessel with the square cross-section, so we do not specify it further. 

The heat flux in conductive and convective fluids entered the fluid through the 
aluminium bottom of the vessel from the thermostated water and left the surface by 
evaporation, thermal radiation and as a sensible heat due to the contact with colder 
air. The value of the total energy flux in the air equals the total heat flux in the water 
at  stationary conditions, when the temperatures of both media do not change with 
time. The former was determined using the semiempirical formula (Golitsyn & 
Grachev 1980, 1986). For the reader's convenience we shall briefly describe the 
procedure. It is based on the formula 

f = 0.14pcPAT~, ak'gv-' 1+-  ( l+Bo-l)  +cr(Tt-T4,), [ ( 3 1 
where the first term on the right is the sum of sensible, fT, and latent, f,, heat fluxes 
in the air above the water surface, and the last term is the thermal radiation flux 
between the surface and air (or the ceiling). The notations are as follows: AT,, is the 
temperature difference between the water surface and the air well above it (in the 
room), m = 0 . 6 1 ~ ~  Ta/9, Y being the latent heat of water vapour formation at the 
temperature T, of the water surface. All molecular coefficients are for air at the 
temperature a(%+ T,) taken from Vargaftik (1972). The Stefan constant 
cr = 5.67 x lo-* W m-2 K-4. The Bowen ratio, the ratio of sensible and latent heat 
fluxes, is 

where k, is the coefficient of diffusion of water vapour in the air, Aq the difference 
of specific absolute humidities at the surface and in the room, p the air pressure, e, 
and e, are the partial saturation pressures of water vapour, at  temperatures T,  and 
T,, q the relative humidity of the room air, and near the water surface we assume 
q = 1. At room temperatures and T, 2 T, we always have Bo 4 1,  the radiative heat 
flux is no more than about 10 % (Grachev 1983) of the total energy flux (2.1) for the 
temperatures T, we have used. 

We measure the temperature within the water T,, but in (2.1) we have 
T,  = T, - AT,,, the last term being the temperature drop across the ' cold film '. It was 
calculated from Ginsburg & Fedorov (1978) that 

AT,, = 2.82 (k)i(&)i, 
17 PLY 167 
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where all the quantities are for water. Knowing T, and T,, we can calculate AT,, 
and substitute it into (2.1) to get a first estimate off, which can be used to obtain 
A%, from (2.3). Then we compute ATa = ATWa-AEw and evaluate a new value of 
the heat flux. It is a process of successive approximations, but, as a rule, one 
iteration is enough to obtain a precision to  within about 1 %, or better, in the limit 
value of the heat flux (the actual value off would not be as accurate because of the 
temperature-measurement errors, and there is an error of a few percent in the 
constant 0.14 in (2.1), Grachev 1983). Golitsyn & Grachev (1986) presented nomo- 
grammes to  find the fluxes fT and f,, and their sum as functions of AT,,, q and T, 
which we have used here. 

We checked in particular whether there was a decrease in the energy flux from the 
water surface t o  the air a t  large rotation rates 52 and small water depth h. Then 
convection in the air within the vessel above the water may have a sufficiently high 
Taylor (and Rayleigh) number and may be influenced by rotation, leading to 
decreased heat transfer as observed by Rossby (1969) in fluids between rigid plates. 
To test this we recorded the rates a t  which the hot water cooled T,(t) without the 
lower thermostat 4 at 52 = 0 and SZ # 0. Several sets of records of T,(t) ranging from 
tens of minutes to  several hours at various values of 52, including 52 = 60 rev/min - our 
fastest possible rotation, were practically the same for 52 = 0 and 52 # 0: differences 
in T,(t) were less than 0.2 "C for the same values o f t  if we started with the same 
volumes of water and initial temperatures. Because the cooling of water here was 
determined by the energy flux from the water surface to the air (actually, Grachev 
1983 used this technique as one of the tests for (2.1)), we were sure that the rotation 
did not influence by any appreciable means the value of the heat flux (2.1), which 
we took in stationary conditions to  be the same as the heat flux in water. 

We may note here that Nakagawa & Frenzen (1955) observed convection in 
rotating air in a vessel with the upper lid of sizes several times larger than ours. They 
observed only three rather large and diffuse vortices and their Taylor number was 
about two orders of magnitude greater than in our case. Evidently, in our experiments 
for convection in air in a vessel, which is in free contact with the room air, there is 
simply 'no room' to  organize any flow patterns which could reduce the energy flux 
from the water surface. 

I n  our experiments the heat flux as determined by (2.1) varied between 5 x lo4 and 
2 x lo6 erg cm-2 s-l, or 50-2000 W mP2, and to obtain this we measured only the 
temperature of the water and dry and wet bulb temperatures of the room. Though 
the procedure is indeed very simple, it has required in reality very substantial 
theoretical and experimental efforts t o  justify it. The reader may be interested to  
know that the formula (2.1) can be generalized to the cooling of multicomponent 
solutions (Golitsyn, Grachev & Lapshin 1984). In  that paper the generalized formula 
was checked experimentally for alcohol solutions of various strength by weighing a t  
intervals a vessel containing the solutions on a precise analytical scale, thereby 
determining the rate of evaporation of both water and alcohol vapours together. The 
experimental results not only confirmed the general structure of a formula similar 
to (2.1) for a wide range of the solution temperature and strength, but allowed the 
determination of the numerical coefficient, which was found to  be close to  0.14, within 
a few per cent. I n  this connection we note that in the handbook by Martynenko & 
Sokovoshin (1982) for the free turbulent convection in air for Ra = 8 x 1083 x 1O'O 
over plates with square, rectangular, triangular and round shapes kept at constant 
temperature with T > T,, the well-known heat transfer law is fulfilled: Nu = d Rak 
with the constant d = 0.15f0.01. The formula (2.1) without the radiative term can 
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be viewed as a generalization of this law, whose physical essence is that the heat flux 
in convective form does not depend at  sufficiently high supercritical Rayleigh 
numbers on the linear scale of convection. 

Other parameters in experiments reported in this paper were varied in the following 
limits: depth of the water layer h from 2-20 or 24 cm depending on the vessel, 
temperature of the thermostat water 23-70 "C, room temperature was around 20-23 "C 
and its relative humidity q varied from 15 to 75 % depending on the season. As a result 
we were able to study a range of the Rayleigh flux number Raf from log to 2 x loll 
and of the Taylor number from lo6 to 10l2, which are much larger than in the 
experiments previously published. 

The flows were visualized by aluminium powder at  the surface or by the dye 
bromium-thymol blue, whose motion can be easily traced because it dissolves slowly 
in water. We also sometimes used permanganate particles. The surface of the vessel 
was photographed and from the pictures obtained linear scales or numbers of vortices 
were measured. 

Specification of the initial conditions is of importance. After filling the vessel (at 
no rotation) with water of temperature somewhat cooler than the water in the 
thermostat, we waited for the thermal equilibrium to be established in the volume 
under study. The water in it is heated from the bottom and cooled from the surface. 
After some time, the temperature of the water had adjusted to heat supply and losses, 
and stayed constant throughout the main volume with an accuracy of order of a tenth 
of a degree, being several degrees colder than in the thermostat. The last fact implies 
that the heat permanently flows to the water through its vessel's metallic bottom, 
3 (see figure 1). At the thermally adjusted state we have never observed thermals 
rising from the bottom. That means that there was no appreciable, or perhaps it is 
better to say unstable boundary thermal layer there. But the ' cold film ' at the surface 
apparently caused all the motions in water. The dye brought onto the surface revealed 
the usual convective patterns in the fluid at rest cooled from the surface (Chernous'ko 
1971; Ginsburg et al. 1981): cooled within the surface 'film' water sinks along the 
convergence surfaces often forming irregular polygons. At an intersection of these 
surfaces a vortex is occasionally formed in which the cooled water sinks more rapidly. 
It is essentially an irregular regime of convection because our smallest Rayleigh flux 
numbers were of order los. 

After the water temperature ceased to change we switched on the turntable. It 
reached its chosen constant angular velocity in about a second. Immediately after 
switching on the rotation the dye formed a spiral on the surface obviously reflecting 
the spin-up of water. After a time ring structures may appear or vortices in regular 
or irregular grid patterns. A study of these patterns is the main topic of this paper. 

3. Convective rings 
Convective rolls as a stationary form of convective motions have also been seen 

in the absence of rotation for shallow layers in circular vessels with a rigid upper lid 
(Koschmieder 1967). For large Taylor numbers in deep layers Dikarev (1983) noted 
that the rings existed for some finite time and afterwards convective vortices were 
formed. He visualized the motions by a shadow method, directing the light beam 
vertically through a glass vessel, so that he could see a vertically integrated picture. 

We present here the results of a systematic study of the ring convective pattern. 
Convective rings are formed only if the fluid surface is free and if the rotation axis 
coincides with the vessel centreline. They do not form if there is an upper lid. They 

17-2 
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FIQURE 2. Ring convective pattern (a) and various stages of its instability (b ,  c) leading to the 
transition to the vortex grid pattern ( d )  at Ra, = 3.3 x 10’ and Ta = 1.9 x lo8. 



Convective structures in rotating @ids 51 1 

also do not appear at smaller angular velocities, a t  52 < 2 s-l (20 rev/min) in our 
experiments. But when they do form we observed them in both our vessels: in the 
square one the rings were inside the circle confined by the square. This means that 
the boundary layer at the walls does not have any influence on the flow structure. 
Sometimes at lower heat fluxes we did not see rings near the upper end of our possible 
rotation velocities, apparently because this was then below the stability curve (1 .6b) .  

If the rotation axis is off the centre more complicated forms of cylindrical surfaces 
can appear. Once we observed an ‘%like’ structure, but usually there are spirals or 
parts of spiral-like surfaces. If we stirred the water when a ring pattern was in its 
initial stage, the convection restored itself in parts of vertical circular or spiral sheets 
or surfaces. Evidently, the sinking of the colder surface water along the sheets is a 
preferable mode of convection at initial times and the organization of it in a circular 
form requires a symmetrical geometry. 

The first ring always appears close to the centre in a time 7, after switching on the 
rotation. A few vortices are seen inside it. Other rings appear one by one towards 
the periphery. The total number of them is up to 6 ,  but the last rings are very faint 
(figure 2a) .  Along the ring surfaces the water is sinking and it is slowly ascending 
in between them, visualized by permanganate particles. This ring pattern after a time 
7, was transformed into a vortical structure (figure 2 d )  with a descent along the 
vortices. The transition between the two states can be seen in figure 2(b ,  c ) .  It starts 
with small wavy perturbations on the rings, on the central one first, which grow and 
roll-up into vortices as for the Kelvin-Helmholtz shear instability. Evidently, it is 
this mechanism that causes the vortex formation (Dovzhenko, Novikov & Oboukhov 
1979; Chernous’ko 1980; Boubnov 1984). Along the rings the fluid is descending and 
between them it is ascending, near the surface the fluid moves towards the rings, the 
convergence lines. Due to the Coriolis force the fluid at different sides of the lines is 
deflected in opposite directions causing a shear which instability generates the 
vortices. But this is not the only mechanism of the vortex formation; e.g. inside the 
central ring vortices may form almost immediately as in a non-rotating fluid. 

We shall now consider some quantitative characteristics of convective rings. 
(i) The time for formation of the first ring 7, does not depend on the rotation rate 

52, but is determined by the layer depth h and the heat flux f. The timescale in a 
viscous fluid is h2/v.  Figure 3 presents the dependence of 7, on this scale divided by 
the cubic root of the Grasshof flux number: 

af=-- q’h4 - Raf Pr-2. 
PCp v9 

The power exponent here, as well as everywhere below, was determined by using 
logarithmic coordinates for 7, vhP2 and G-rp The 87 measured times 7, presented in 
figure 3 gave the linear regression in seconds as 

7 ,  = 2.06h2v-’G$+20.3 (3.2) 

with the determination coefficient r2 = 0.87 and correlation coefficient T = 0.93. The 
statistically rather well determined relationship (3 .2)  can be explained as follows. 
Inspection of (3 .1)  and (3.2) shows that 7 ,  should not depend on the viscosity. 
Remember also that for the convection the vertical velocity 

w(z) = a(€%$, (3.3) 
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FIQURE 3. Time of formation of the first central ring T,, in s, versus the viscous timescale h2/v times 
the inverse cubic root of the Grasshof number: 0 ,  round vessel; x , square vessel. 

where a x 0.4 for SZ = 0,  and the rate of kinetic-energy dissipation is (at Nu B 1 and 
also for SZ # 0, see Golitsyn 1979) : 

Define, averaged with height, velocity 

3a 
4 

W ( Z )  dz = - (sh)!. 

Using (3.4) we may rewrite the Rayleigh flux number asf 

sh4 
- k2v 

Ra - - = GrjPr2. 

The first term on the right of (3.2) may now be written as 

(3.5) 

t Equation (3.6) suggests a number of interpretations of the Rayleigh flux number. For example, 
neglecting the multiplyer Pr2 it  is the non-dimensional rate of the kinetic-energy generation 
(dissipation) for convection, if the velocity scale is chosen, as is usual, as klh.  The Grasshof number 
G T ~  is the fourth power of the ratio of the depth h to the Kolmogorov microscale 1, = v k ?  
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FIGURE 4. Side view of the ring convective pattern: the depth of the rings decreases outwards 
from the centre. 

Therefore the time of the first ring formation T, is found to be of the order of the 
convective time scale h/E .  This fact together with the absence of rings at  smaller Q 
shows that the process of (the first) ring formation is a result of complicated interplay 
between spin-up of water and convection. The spin-up time is 

It varied in our experiments from about 10 s to several minutes. The fact that we 
did not observe rings a t  smaller Q, when vortices start to form everywhere, suggests 
that if the spin-up time (3.8) is large compared with some convective scale t, of order 
h / E  the rings may not form. When we have vortices but no rings, they are chaotic 
in space and time, and the regime will be called irregular (or turbulent) vortex grid 
(see §$4 and 5 below). Rings usually evolve into a regular grid. 

(ii) Figure 4 presents a side view of the rings at one stage of their evolution. The 
depth of descent of the fluid in the rings at each moment T, < t < T,  is approximately 
inversely proportional to the rings’ distance from the centre. If so, the area of sheets 
along which the fluid descends is about constant for every sheet. This may reflect 
the formation times of the sheets. 

(iii) There exists a minimum diameter d, of the central ring which depends on the 
angular velocity (d, a Q-l), depth and heat flux. A lengthscale in rotating fluids is 
the Ekman scale 1, defined by (1.5). We treated the data from 48 measurements 
presented in figure 5 using 
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FIGURE 5. Dependence of the central ring diameter d, scaled by the Ekman length (1.5) on the 
Taylor and Rayleigh flux numbers: -, the regression (3.9); ----, (3.10); 0,  f =  85 W m-2; 
0, 180 W m-2; x ,  500 W m-2; A, lo00 W m-*. 

- 
0.05 0.1 0.15 0.2 

1, (cm) 
FIGURE 6. Dependence of the mean distance between the rings on the Kolmogorof microscale 1, ; 
each point is an average of about twenty individual measurements, bars indicate r.m.8. deviations. 

The linear regression gives c2 = 6.2, a = 0.4 with r2 = 0.87. We cannot comment 
on this dependence except to note that the dependence of d ,  on molecular parameters 
is rather weak: d, cc u(k2v)-t = Pr! k-;. A simpler, but not very easily understood 
interpretation would arise if cc = j. Then with d, cc l2-1 we would have, taking into 
account (3.4)-( 3.6), 

d ,  cc ( ~ h ) i Q - 1  Prg, (3.10) 
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FIGURE 7. Dependence of the time of formation of the convective vortex pattern 7, on the 
determining parameters : 0, round vessel ; x , square vessel. 

which would show an interplay between convection and .rotation. The dashed line 
in figure 5 shows the dependence d, a R 4  which may also fit our data. We did not 
expect before treating this data as in (i), that the viscosity dependence would be weak 
or might be absent altogether. 

(iv) The distance between the rings r varied in our experiments from 0.4 to 1.3 cm. 
In every case one may 8ee a tendency for r to decrease with an increase in the radius 
of the rings. We checked in particular whether there is any function for r like the 
distance between the roots of Jo(r), the zero-order Bessel function (the principal 
eigenmode for cylindrical geometry), but it was not clear that this was the case. 
Moreover, in experiments repeated with exactly the same external parameters the 
value of r may vary by 50%. Therefore we averaged all the distances and used P 
determined for identical sets of external conditions. There was a clear dependence 
on the heat flux, but no dependence on the depth h and angular velocity a. In these 
circumstances the only lengthscale is the Kolmogorov microscale 1, = vid and we 
may look for a relationship of the type 

P =  C,ZK+C4,  (3.11) 



516 B.  M .  Boubnov and G.  8. Golitsyn 

where c3 = 3.3, c., = 0.39 em and I ,  = h Rafa Pri, see (3.6). The relation leading to 
(3.10) is presented in figure 6, where every point with error bars (r.m.s. deviations) 
corresponds to about twenty individual measurements. It is worth emphasizing that 
both the minimum ring diameter and their mean spacing are not governed by the 
Ekman scale (1.5) according to our results. 

(v) Having existed for some time up to 15 min the rings rolled-up into vortices, 
see figure 2(a-d). The time of the vortex formation, taken from switching-on the 
turntable up to the disappearance of the last ring, depends on the heat flux, depth 
and angular velocity. All these dependences can be described by, see figure 7, 

r,  = c, h2v-’ Ra? Td, (3.12) 

where c, = 101 and the determination coefficient r2 = 0.84 ( r  = 0.92) for 116 points. 
In this treatment we also included results obtained when vortices were formed 
without the ring stage. We cannot present any simple interpretation for this 
dependence. Clearly viscosity, convection and rotation all play a part here. 

4. Vortical convection 
4.1. Types of vortex convective grids 

Three types of vortex patterns are possible depending mainly on the values of the 
similarity criteria. In this subsection we discuss them only in qualitative terms and 
a quantitative analysis will be given in $54.2 and 5. 

4.1.1. Regular convective vortex grid 
Centres of vortices are in the vertices of equilateral triangles, see figure 8, though 

one may observe some ‘dislocations’ there. All the vortices are cyclonic, as was 
previously observed and explained by Nakagawa & Frenzen (1955), because water 
in them sinks and the convergence intensifies the angular momentum there. The 
positions of vortices are similar to theoretical predictions (Chandrasekhar 1953,1961), 
but there is an important difference in the flow organization compared with the 
Chandrasekhar case of two both free-stress boundaries, the only case for which he 
describes the flow field. In  the latter case the fluid sinks in the centre of a hexagon 
and ascends in its vertices. We observed the ascend along some cylindrical or conical 
surfaces in the centres of which there is an intense vortex with a strong vertical 
descent motion. Such a structure of vortices is clearly seen by Nakagawa & Frenzen 
(1955) in their figure 1 for a slightly irregular vortex grid viewed from above, where 
central dots, intense vortices, are seen inside fainter circles. Traces of such a structure 
may be also seen around some vortices in figure 8 ( a )  (plane view) and ( b )  (inclined 
view). 

Such a picture can be stationary for a long time (e.g. a working day), if the 
boundary conditions are kept stationary. However, a t  higher Rayleigh numbers there 
may be an interaction between a pair of adjacent vortices without appreciable 
influence on the positions in the grid of other neighbouring ones. 

4.1.2. Convective vortex grid with strong interactions 
After the formation of the convective grid the interactions at even higher Rayleigh 

numbers may be not only between occasional pairs of vortices, but also between more 
distant vortices. As a result, strong vortices are formed or strong mixing occurs 
destructing the grid in certain areas of the vessel. After some time the grid or a strong 
vortex may form anew in the area of mixing and the interactions start again. 
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FIQURE 8. Convective vortex grid: (a) plane view, ( b )  inclined view; Ruf = 7.1 x lo7, 
Tu = 5.9 x los. 
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FIQURE 9. An example of an irregular convective vortex pattern; Raf = 2.0 x lo8, 
Ta = 7.1 x lo7. 

We shall describe the interactions of vortices in some detail in $6. We note that 
all of the more or less regular grids were formed from the rings reported in 53. 

4.1.3. Irregular vortex pattern 
At even higher Rayleigh numbers or smaller Taylor numbers (for quantitative 

details see $4.2) an irregular vortex pattern is formed as a result of the decay of the 
semi-regular vortex grid, which may exist for only a short time. An irregular pattern 
may form without a semi-regular grid stage similar to the one described under $4.1.2. 
When there are no rings, the vortices formed in about a minute (see lower left part 
of figure 7)  are always irregular in space and move along more or less random 
trajectories. Irregular vortices are much less intense than in the vortex grid, they are 
less concentrated in space and descent velocities are markedly slower. Their mutual 
interaction is much weaker. 

An example of irregular vortex convection is presented in figure 9, where the 
visualization uses aluminium powder (to emphasize contrasts a black disk was placed 
on the bottom of the vessel). Regimes similar in appearance but with fewer vortices 
were described by Hopfinger et al. (1982) when they studied the influence of rotation 
on mechanically generated turbulence (see also 9 5).  

4.2. Transition from regular vortex grids to irregular convection 
As we have mentioned in $1  the criterion for the onset of convective motion in the 
rotating fluid layer (1.6 b )  or its equivalent for the two rigid boundaries (Chandrasekhar 
1961) was first checked experimentally by Nakagawa & Frenzen (1955). Though their 
individual points scatter considerably, a dependence of the (1.6b) type was well 
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FIGURE 10. Transition from the regular convective vortex grid to an irregular one for different values 
of the heat flux: ( a ) f =  1960 W m-e; (b) 690 W m-2; (c) 140 W m-z; ( d )  85 W m-z; (e) the neutral 
stability curve (1.6b); transition at every point was achieved by decreasing 52. The right end of 
a line near each point corresponds to a regular grid, the left end to an irregular one; I refers to 
the fluid in rigid rotation, I1 to the regular grid, I11 the irregular regime. 

confirmed for lo5 < Ra < lo8 and lo6 < Ta < 2 x 1O'O. However, Rossby (1969) 
observed for Ta > los and also for two rigid boundaries, using different techniques 
to determine Ra,,, an increasing deviation from a (l.gb)-type dependence. His results 
are better described as Rac,cc Tan with n = 0.57 (determined by us from his 
figure 11)  instead of g. The causes for that are still not clear. We shall present 
supportive evidence for the linear theory in the appropriate region of Raf and Ta 
in $5 ,  where we consider the vortex spatial density or their spacing. 

The overall picture is the following: if we, for a sufficiently large Taylor number 
Ta = const., increase the Rayleigh flux number by increasing the heat flux f,  then 
after a state of no motion - the rigid rotation, region I in figure 10 - we obtain a new 
stationary state - the vortex convective grid (the ring structure is a transient 
phenomenon) situated at region I1 in figure 10. Further increase of f  causes the 
appearance of irregular vortex patterns, region 111, which may be also called 
turbulent vortex convection. The transition from the regular grid to the irregular one 
on the parameter plane (Raf, Ta)  is rather gradual, determining a whole transitional 
region (of a strip-like shape), which is described in $4.1.2. The transition from I to 
I11 can also be performed at Raf = const. by decreasing the Taylor number Ta 
thereby easing the rotational constraint. We found that this was best done by keeping 
the water temperature T, constant and decreasing the rotation rate. Raf and Ta are 
varied by changing the fluid depth but keeping the water temperature constant for 
each series of measurements. 

The results of determining transitions between states I1 and I11 are presented in 
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FIQURE 11 .  The same as in figure 10, but the coordinate log Ruf is replaced by 

log [(fo/f) Raf] wheref, =f3 = 140 W m-2. 

figure 10. The ends of lines correspond to  a particular regime : at the left end the regime 
is fully irregular and at the right completely regular. It was a surprise that for each 
value of the heat flux f a different curve was obtained: (a ,  b, c ,  d )  but for every curve 

Raf2, = c, Tag, (4.1) 

as for the stability curve (1.6b) dividing regions I and 11. The larger the heat flux 
the higher is a particular transitional line Rafzi (i = 1,2 ,3 ,4)  as a function of Ta. 
Clearly an additional non-dimensional parameter depending on f must enter, and the 
only possibility is the Nusselt number, N u  a f, and defined by (1.4). Unfortunately 
we cannot determine i t  directly from our measurements because we do not know the 
temperatures at the water-layer boundaries. Using the definition (1.3) we may rewrite 

(4.2) 
(4.1) as 

Because the index i refers to the particular heat flux f,, we omit it from the ordinary 
Rayleigh number (2 refers to the transition from state I1 to state 111: from regular 
to irregular convection). At this point we may recall again the work by Rossby (1969). 
His figure 11, mentioned a t  the beginning of this subsection, also presents the results 
of measurements of the Nusselt number as isolines in (Ra, Ta) coordinates for water 
and his figure 13 for mercury. Both of his figures show that for Ta > lo7 and for 
N u  6 10 in water, and for N u  6 3 in mercury, these isolines are proportional to Tak 
He presents results only for Ta < lo* in the first case and for Ta < log in the second 
case, but the patterns in both pictures strongly suggest that  for higher Ta isolines 
for larger values of N u  tend also to  be proportional Taf. So we may assume that in 
(4.2) not only f, but also Nui is constant. 

To check these possibilities we plotted (fo/f,) Rafzi as a function of the Taylor 
number, where f, = f3 = 140 W m-z. The results are presented in figure 11.  The fact 

Ra, Nu, = ct Tai. 
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that all four experimental curves coalesce into a single one shows that in (4.1), or 
(4.2), coefficients ci are indeed proportional toft, or Nu,  with the same proportionality 
coefficient. This shows that the transition from a regular to an irregular regime is 
governed more naturally by the ordinary Rayleigh number Ra, rather than by the 
flux number Raf. 

The straight line in figure 11 corresponds to 

(4.3) f o  f6 RafZi = c, Td, 

where c, = 464 f 113, if we consider the ends of segments in figure 11. Clearly the value 
of c,  depends on the choice off,. By multiplying both sides of (4.3) by h / p c ,  k A T  we 
may rewrite it, accounting for (1.4), as 

where Nuo is an unknown constant and c; < 464+ 113, because Nu > 1 for the 
transition under study. 

We can try to reduce the estimate of the value of c;. The lowest heat flux that we 
achieved a t  which the transition from I1 to I11 was still observed was f4 = 85 W m-,. 
This reduces the upper estimate of c; to 282 f 69. If we could know the value of Nu,  
for this flux and/or performed successful measurements at even smaller values, we 
could further reduce the value of c;. 

We may compare (4.5) with (1.6b) and obtain 

Ra, = c l  Ra,, , (4.6) 

where the multiplyer c l  < (282 f 69)/8.7 = 33 f 8. We see that if the usual Rayleigh 
number is some 30 times (or perhaps less) greater than the first critical Rayleigh 
number (having in mind the difference in boundary conditions - see end of Q l) ,  then 
the convection is irregular. 

There is another interesting interpretation of the same transition processes which 
can be obtained from relationship (4.3), i.e. 

( 4 . 7 ~ )  

where the value of c ,  is a function of the temperature only because the molecular 
constants depend on T,. On the left of (4.7) we have the density of the total potential 
vorticity. If 51, > c, the vortex grid is stable; if the inequality is reversed the grid 
is unstable (because of the gradual nature of the transition we should allow for a range 
of values of c, to make a definite statement). Equation ( 4 . 7 ~ )  illustrates again the 
role of rotation in flow stabilization, but for the transition between regular and 
irregular regimes. To our knowledge such a view of stability problems in rotating flows 
employing the potential vorticity has not received much attention. 

We may non-dimensionalize ( 4 . 7 ~ )  by introducing formally E,  = agf , /c ,  pc, where 
fo / c6  = 140 W m-,/464 = 0.3 W m-,. Then we form the Kolmogorov scales of length, 
1, = vfe;+ and time T~ = (v/E,)* to obtain 

(4.7 b )  
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FIQURE 12. Dependence of the vortex number density N on Taih-2; - , equation (1.10): 
N = 0.28Tab-2 from the linear theory; 8, points by Nakagawa & Frenzen (1955); A, 
f =  85 W m-2; ., 140 W m-2; x ,  690 W m-2; 0,  1960 W m-2. 

and if > P&, we have a stable vortex grid, and the converse. One should not 
ascribe any physical meaning to the value of co, or f o / c 6 :  it  is only a convenient 
dimensional quantity to simplify (4.7 b ). 

5. Structure of convective vortex patterns 
The main geometrical parameter of the convective vortex grid, regular or irregular, 

is the distance between the centres of adjacent vortices d. Non-dimensionalized by 
the layer depth h it  is 

= $ ( 2 N ) f h - ' ,  (5.1) 

where N is the vortex number density per unit area in an equilateral triangle grid. 
According to (1.10) N = 0.028 Tai h-2. The value of N was determined by counting 
vortices on the photographs of the vessel surface and dividing their total number by 
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FIQURE 13. Classification of linear and nonlinear convective vortex grids by the dependence of the 
vortex number density on the external parameters using a special coordinate system, where the 
straight line parallel to the abscissa corresponds to the linear theory (1.10) and the sloping line to 
equation (5.2) or the nonlinear regime; A, points from Nakagawa & Frenzen (1955); 0, regular 
grid; x , irregular grid. 

the surface area. These determinations include some errors, especially for irregular 
structures or in the presence of vortical interactions. Figures 12-14 present the results 
of these measurements, first in dimensional form (figure 12), then in a special 
non-dimensional form (figure 13), and finally in the parameter space (Ruf, Tu), where 
figure 14 shows all the flow regimes studied here. 

Figure 12 presents results in coordinates (N, T ~ i h - ~ ) .  The solid line corresponds to 
the linear-theory (1.10). The three crossed circles are points from Nakagawa BE 
Frenzen (1955). Our points are classified by the value of the heat flux f, because its 
change in our experiments takes a longer time than changes in h or a. The important 
result from this figure is that most points are well below the theoretical line, though 
some points, especially a t  smaller heat fluxes (in fact, smaller Ruf) agree rather well 
with the theory when N oc Qfh-i.  In the course of intermediate analysis (not 
presented here) we found that most points agree very well with the relation N cc Qh-i, 
where the proportionality coefficient does depend on the value of the heat flux. 

Therefore, having in mind these two dependences we plot in figure 13 all our points 
in the special non-dimensional coordinates, where the ordinate is 
y = lg (2h2NTu-f x 3-t x 0 .W2)  and the abscissa is 2 = lg (Tu/Ruf). In these 
coordinates if the linear theory holds we have a horizontal line y = 0. To fulfill 
N oc Qh-f one should have y oc d. Both asymptotes are shown in figure 13 by 
segments of straight lines. The circles correspond to regular regimes, crosses to 
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FIQURE 14. Region of the similarity criteria where the experiments were performed. The numbers 
on the graphs are a = d / h  - the non-dimensional distance between the vortices in our experiments 
(a d 0.75) and between the rolls in Rossby’s (1969) experiment (lower part of the figure). (a )  the 
stability curve (1.6); ( b )  the separation line between linear (below) and nonlinear regimes; (c) one 
of the curves (4.1) forf = 140 W m-2 dividing regular and irregular regimes of convection. 

irregular ones, triangles are three points by Nakagawa & Frenzen (1955). We can 
formally determine from the crossing of the two asymptotes that for Ta/Ra f  > 24.5 
we have the linear regime and for Ta/Ra f  < 24.5 a regime which we call nonlinear. 
There N oc 0, the Rayleigh flux numbers are far from their critical stability values 
and, presumably, the nonlinear effects are important. 

The nonlinear regime may be regular or irregular depending on the fulfilment of 
conditions (4.3) or (4.7), but the whole lower left part of figure 13 corresponds to 
irregular regimes (crosses), where the influence of rotation is small. The mixing of 
regular and irregular regimes (circles and crosses) in the central part of figure 13 
evidently shows, as found in $4.2, that  the value of Raf does not conveniently describe 
these two kinds of regimes. Note that the ratio Ta/Raf  can be interpreted as (lK/lE)4, 
the fourth power of the ratio of the Kolmogorov microscale to the Ekman scale (see 
(1.5), (3.6) and the footnote to the latter). The smaller 1, and larger I,, the larger 
is the role of convection and the smaller the role of rotation. 

In  the nonlinear regime the number density of vortices per unit area can be 
approximated as 

N = cg 0 v -  RaFi = cg 1i2 RaTi, (5.2) 

where cg = 0.033, as determined from the linear regression between 104 pairs of N 
and Qv-l  Raf‘ with the determination coefficient r2 = 0.94 (the correlation r = 0.97). 
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The mean distance between the centres of adjacent vortices is then, from (5.2) and 
(5.1), 

d=cBIERa;g, 1 c g =  (d3>a 2 ~ ,  = 5.1. (5.3) 

The linear dependence of the number of vortices on the rotation rate 52 was also 
noted by Hopfinger et al. (1982), who generated turbulence mechanically by 
oscillating grid in a rotating tank filled with water. It seems that the proportionality 
N K 52 is a general property of strongly forced flows in rotating fluids. We also 
obtained a similar relation for the two rigid boundaries of the layer, when the lower 
boundary was at higher temperature than the upper one with visualization by 
aluminium powder. Though in this case we could not fully verify the relationship (5.2), 
by keeping the temperatures of our two thermostats constant and varying 52 however 
we observed that N was proportional to 52 with a good precision. 

Figure 14 summarizes and classifies the results of all our experiments on the plane 
of the similarity criteria the Rayleigh flux number Ra, and the Taylor number Ta. 
The lower curve is the stability curve Raft, = Racr as a function of Ta according to 
(1.6) with provision for its dependence on the precise nature of the boundary 
conditions as discussed at the end of $ 1 .  We plotted the isolines of values of the 
non-dimensional distance between the vortices a = d/h for our experiments (upper 
right part) and for the experiments by Rossby (1969). For his case a is actually the 
non-dimensional size of the rolls taken from his figure 7,  and the Rayleigh flux number 
was estimated using his figure 11. In his experiments a 2 1 and in ours a < 0.75. For 
smaller values of Ta the structure of convection is close to that in a fluid at rest 
(52 = 0), which is witnessed by Rossby's experiments and by numerical computations 
by Sommerville (1971). The line Ta = 24.5Raf marks where the transition to the 
nonlinear regime (5.2) takes place. It shows that more room appears for the linear 
regime with the increase of the Taylor number when rotation suppresses nonlinearity. 

6. Vortex structure and vortical interactions 
In  stable regular grids vortices always reach the bottom. With variation in Raf 

and Ta they reach the bottom as practically straight threads or; at some depth, the 
vortices start rolling out as spirals which reach the bottom. Occasionally we observed 
perturbations on vortices similar to those reported by Hopfinger et al. (1982) in cases 
of semi-regular grids. In irregular or semi-regular regimes a vortex may not reach 
the bottom and vortices are seen in a layer with a depth 1 which is usually the case 
for larger heat fluxes or larger Raf. We determine I as the maximum length of the 
observed vortices for given values of the external similarity criteria Ra, and Ta. In 
our vessel with transparent walls at f > 600 W m-2 the results of measurements can 
be described by the relation (see figure 15) 

where according to the linear regression cl0 = 0.39, r2 = 0.88 for 48 points. This 
dependence is fulfilled for 4 x loB < Ra, < 2 x 10" and lo6 < Ta < lo*. At smaller 
Ra, the dependence on it is much less appreciable. 

When we move into the region of irregularity, we first observe separate local 
violations of the symmetry ; however in general vortices are immovable. With further 
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FIQURE 15. Dependence of non-dimensional length of vortices on external parameters; 
X ,  h = 20 cm; 0, 15 cm; A, 10 cm; *, 6 cm. 

increase of the Rayleigh flux number, or decrease of the Taylor number pair 
interactions of some adjacent vortices appear: first a vortex pair starts to rotate 
around a common axis as in the classical theory of two-dimensional vortices, then 
the vortices begin to interlace, particularly their upper parts, forming a double helix, 
and finally they coalesce into one vortex of greater intensity. These three stages are 
marked 1 , 2  and 3 in figure 16. The process of collapse of the double helix also starts 
from its upper part. After the collapse the vortex formed weakens and occupies the 
place in the grid of one of the two original vortices, and at the vacant place a new 
vortex starts to grow. After a time, similar interactions can be observed in another 
place, sometimes one may see several such interactions in various places simul- 
taneously. This picture relates to stable vortex grids. If the grid is eventually 
unstable, as described in $4.1, it is the vortical interactions which lead to a decay of 
the regular structure soon after its formation. 

We tried to determine the dependence of the time of the vortex interactions T , ~  

on the external parameters. We define the beginning of the time interval as the 
moment when the vortex pair is seen to start its rotation, and the end of it as the 
moment when the upper parts of the two vortices have coalesced. The values of T , ~  

measured by a stop-watch are found to be independent, on average, of the general 
rotation rate 52, but do depend on the heat flux and layer depth. We did not succeed 
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FIGURE 16. Vortex interactions in the convective grid : 1, interlacing of two vortices; 2, formation 
of a double helix; 3, coalescence of the vortices; Raf = 1.05 x lo8, Ta = 5.9 x lo8. 

f (100 W m-e) 2 5 10.8 

h (cm) 3 6 10 20 3 6 10 15 3 6 10 

Tvi ( 8 )  26 41 63 140 16 20 26 42 11 13 18 
Raf 1 O-E 6.6 105 810 13000 24 380 2940 14800 71.6 1140 8800 

TABLE 1. Time of the vortex interactions T , ~  for three values of the heat flux j ,  and various layer 
depths h, averaged over the angular velocity 52 (several values for each case) 

in finding any single dependence on the Rayleigh flux number, therefore we present 
results of our determinations of the time rVi in table 1. 

We see from table 1 that the time T , ~  increases with the depth, but decreases with 
the heat flux. 

7. Some qualitative experiments 

convection in rotating fluids. 
We shall describe two sets of qualitative experiments that reveal the features of 

We carried out several experiments with the turntable placed on an inclined plane 
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with the inclination angle up to 30". The vessel, which was filled with water, had a 
rigid cooled upper lid and a heated bottom. The convective grid was formed with the 
vortex axes along the direction of the angular velocity in full accord with the 
Proudman-Taylor theorem. The results of Busse & Carrigan (1974) described in $1  
are relevant here because they present the limiting case when the volume force was 
perpendicular to the rotation axis, with the flow patterns still aligned along Q. 

Some experiments were performed in a vessel with a stepped bottom. According 
to (1.10) and the results in $5 the spacings of the grid must be different in parts of 
different depth. The case presented in figure 17 shows the convection in the vessel, 
one half of which has h = 2 cm, and the other half h = 10 cm. The difference in 
distance between the vortices is clearly seen. A t  the interface one can see the vortex 
interactions caused by the difference in the structures, which cause grid destruction 
at certain places and formation of some more intensive vortices. But away from the 
boundary both grids are very regular. This implies a strong stability of convective 
grids and that vortical interactions are short range, because defects of the grids are 
clear only near the interface (especially, in the more dense 2 cm deep grid, for which 
the Rayleigh flux number is (lop)*, 625 times less than for the other grid). 

8. Conclusions 
We have performed experiments on convection in rotating water with a free surface 

and analysed the results for a wide range of the similarity criteria Rayleigh flux 
number and Taylor number. But the range is far to low for any direct geophysical 
applications. The experiments have revealed a rich picture of flow patterns and 
regimes, but many aspects and details of the picture have remained virtually 
untouched or understudied. For instance, the structure of vortices and cells, briefly 
mentioned in $4.1, seems to be very intriguing. The extension of measurements to 
higher values of Raf and Ta is obviously necessary, e.g. in the light of potential 
contradictions hinted by the results presented in figures 10 and 13 and more clearly 
seen in figure 14; for example, the line 24.5Raf = Ta found to divide linear and 
nonlinear, but still regular, regimes is about to intersect the lines (4.1), Rafz, = C, Tai 
separating regular and irregular regimes. Clearly, measurements of temperature and 
direct determinations of the ordinary Rayleigh number and Nusselt number are 
required to settle directly the problem of transition to irregular regimes. To fulfil 
this programme one needs a larger tank and turntable and a much more sophisticated 
measurement technique. This work appears to be only the very beginning of 
systematic studies in the subject. 

Nevertheless, our experiments show the following characteristic features of con- 
vection in rotating fluids : 

(i) formation of various convective vortex patterns, regular or irregular; 
(ii) formation of regular patterns in a layer cooled from the free surface is preceeded 

by an intermediate stage, the ring structure in a symmetrical geometry, which is 
formedapparently from interaction ofthe non-uniformvelocity fieldin the fluidspin-up 
with the convection caused by cooling from the free surface; 

(iii) the characteristic spacing of the vortex grid depends on the regime, linear or 
nonlinear, determined by the ratio of the Taylor and Rayleigh heat flux numbers: 
if Ta/Raf 2 25, we have the linear regime with spacing d determined by the linear 
theory of convective instability in rotating fluids of Chandrasekhar (1953, 1961) and 
by Nakagawa & Frenzen (1955), when d c c a ;  in the nonlinear regime when 
Ta/Raf < 25 we find d cc a cc I , ,  the Ekman length, as in the case of mechanically 
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generated turbulence in a rotating tank (Hopfinger et al. 1982). However, the flow 
structure of our observed vortex patterns is different, even in the linear regime, from 
that theoretically predicted for both boundaries stress-free : all our vortices in a 
triangular grid are of the same cyclonic sign, in which fluid sinks and ascends along 
some cylindrical surfaces surrounding the vortices, while in the theory the vortices 
in the centres of hexagonal cells are cyclonic and anticyclonic a t  their vertices, where 
the fluid ascends; 

(iv) the transition from a regular vortex grid to an irregular one is through the 
vortex interaction and is rather gradual in the parameter space; it appears to be 
governed by a value of the ordinary Rayleigh number (better, a range of the Rayleigh 
numbers a t  a given Taylor number), which is found to be proportional to Tag, as is 
the first transition Rayleigh number from the state of rest (rigid rotation) ; the ratio 
of the two transitional numbers is in the range 25-40; 

(v) the vortex interactions, the basic mechanism transforming the regular con- 
vective grids into irregular ones, have three stages : rotation of a vortex pair around 
a common axis, interlacing of the vortices forming a double-helix structure and 
collapse of the structure into one more-intense vortex. 

We wish to express our sincere gratitude to Academician A. M. Oboukhov for 
support of this work and several useful discussions, and also to two referees, whose 
comments and questions required clarification of many points, which considerably 
improved the presentation of the material. 
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